
Cross-Origin Web Attacks via HTTP/2 Server Push
and Signed HTTP Exchange

Pinji Chen∗, Jianjun Chen∗†‡, Mingming Zhang†, Qi Wang∗, Yiming Zhang∗, Mingwei Xu∗, Haixin Duan∗
∗Tsinghua University, †Zhongguancun Laboratory

{cpj24, qi-wang23}@mails.tsinghua.edu.cn, {jianjun, zhangyiming, xumw, duanhx}@tsinghua.edu.cn,
zhangmm@mail.zgclab.edu.cn

Abstract—In this paper, we investigate the security implications
of HTTP/2 server push and signed HTTP exchange (SXG)
on the Same-Origin Policy (SOP), a fundamental web security
mechanism designed to prevent cross-origin attacks. We identify
a vulnerability introduced by these features, where the traditional
strict SOP origin based on URI is undermined by a more
permissive HTTP/2 authority based on the SubjectAlternative-
Name (SAN) list in the TLS certificate. This relaxation of
origin constraints, coupled with the prevalent use of shared
certificates among unrelated domains, poses significant security
risks, allowing attackers to bypass SOP protections. We introduce
two novel attack vectors, CrossPUSH and CrossSXG, which
enable an off-path attacker to execute a wide range of cross-origin
web attacks, including arbitrary cross-site scripting (XSS), cookie
manipulation, and malicious file downloads, across all domains
listed in a shared certificate. Our investigation reveals the prac-
ticality and prevalence of these threats, with our measurements
uncovering vulnerabilities in widely-used web browsers such as
Chrome and Edge, and notable websites including Microsoft. We
responsibly disclose our findings to affected vendors and receive
acknowledgments from Huawei, Baidu, Microsoft, etc.

I. INTRODUCTION

The Same-Origin Policy (SOP) is a cornerstone of web
security, designed to prevent malicious scripts on one website
from accessing data on another, thereby safeguarding user data
against cross-origin attacks. Despite its foundational role, we
find that recent advancements in HTTP protocol, specifically
HTTP/2 server push and signed HTTP exchange (SXG),
pose challenges to this web security paradigm. These new
HTTP features introduce novel security concerns that could
potentially allow the circumvention of SOP, undermining the
security of web content across domains.

At the core of this vulnerability lies two critical issues.
First, the notion of “authority” in HTTP/2 and HTTP/3 is
looser compared to the “origin” definition of the browser’s
SOP. Browser’s SOP defines the origin of a resource as
the URI scheme/host/port tuple [1], while RFC 9110 [2]
states that in HTTP/2 and HTTP/3, any domain listed in

‡Corresponding author.

the SubjectAlternativeName (SAN) of a TLS certificate is
recognized as the authority. Second, HTTP/2 server push and
SXG both allow to specify the origin of resources that they
deliver. Combining these two characteristics, a domain can
spoof the origin of another domain within the SAN list of
TLS certificates to deliver resources and browsers will accept
them as legitimate same-origin resources. This shift from a
traditional strict URI-based origin to a more permissive SAN
list-based origin could weaken the traditional boundaries of
browser origin security.

Even worse, the situation is exacerbated when this permis-
sive boundary meets the problematic ecosystem of the shared
certificate, whose SAN list contains multiple domains. Previ-
ous work has shown that multiple-domain shared certificates
are common and these domains are often managed by disparate
entities [3]. It is common on today’s web to connect to a
website whose certificate is shared with an attacker-controlled
domain [4]. Such shared certificates create an avenue for
attackers to exploit these features for malicious purposes.

In this paper, we propose two novel cross-origin web attacks
via server push and SXG (CrossPUSH and CrossSXG). These
techniques enable an off-path attacker with access to a shared
certificate to execute a range of web attacks, such as arbitrary
XSS, cookie manipulation, and malicious file downloads,
across all domains listed in the certificate. These attacks are
particularly severe because they remain effective even against
victim websites that adhere to HTTPS best practices and
implement strict SOP security measures like Content Security
Policy (CSP).

We further introduce several strategies to demonstrate the
practicality and impact of CrossPUSH and CrossSXG attacks.
First, we demonstrate that acquiring the attack condition (i.e.,
shared certificates) is feasible in practice via simple vulnerabil-
ities, such as by domain reselling or domain takeover. Second,
we explore practical exploitation using validation reuse to
extend attack duration and the Add Grace Period (AGP) to
reduce attack cost. Furthermore, we introduce a technique
to make illegitimately acquired shared certificates difficult to
revoke by legitimate domain owners, ensuring the persistence
of the attack.

To evaluate the real-world impact of these two attacks, we
conduct both client-side and server-side measurement studies.
Our client-side measurement results show that: (1) 11 out
of 14 popular browsers, including Chrome and Edge, are

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.231086
www.ndss-symposium.org

vulnerable to at least one of our attacks; (2) Numerous popular
mobile applications, including Instagram and WeChat, are also
affected by our attacks; (3) Some vulnerable libraries, such as
Chrome-Net, can expose browsers to our attacks. Our server-
side measurement results show that: (1) More than 10K Tranco
Top 1M domains, including many corporate websites, have
been resold and potentially exposed to our attacks; (2) About
5K dangling domains, including a subdomain of windowsup-
date.com, can be exploited for our cross-origin web attacks;
(3) About 85% of Tranco Top 1K domains are included
in the shared certificates of domains ranked out of Tranco
Top 1M. That risky dependency allows attackers to attack
the top websites via less secure sites. We have responsibly
reported our findings to the affected providers and received
acknowledgments from Huawei, Baidu, Microsoft, etc.

Contributions. In this paper, we make the following con-
tributions.

• We present CrossPUSH and CrossSXG attacks that
broadly threaten web security. We demonstrate this threat
is practical and severe, enabling off-path attackers to con-
duct a range of web attacks by exploiting HTTP/2 server
push and SXG, thus circumventing SOP protections.

• We conduct comprehensive measurements to evaluate the
real-world impact of the attacks, revealing vulnerabilities
across numerous popular browsers and websites.

• We propose four approaches to mitigate CrossPUSH and
CrossSXG attacks. We have also responsibly disclosed
issues to affected vendors and received positive feedback.

II. BACKGROUND

A. HTTP/2 Server Push

Server push is one of the new characteristics of HTTP/2,
which was first defined in RFC 7540 [5]. Without server push,
traditional website access follows the request-then-response
pattern that a client initially requests for an HTML document,
and then the web server replies with the assets. Afterward,
the browser parses the HTML and discovers other referenced
assets, such as scripts, images, and style sheets. Due to the
discoveries, the browser needs to request these assets again,
which takes at least two round-trip times (RTT) to get critical
resources. Before the browser gets all of the resources, the user
can merely see a blank page on his screen. Server push solves
this problem more efficiently. When the server responds with
HTML, it can also proactively push what the users are going
to need for the requested pages. Consequently, pushed assets
prevent the browser from requesting resources again, the whole
process only costs one RTT to load the contents if the server
preemptively sends all critical assets, which greatly improves
the performance of website access. Specified in HTTP/2 by
the IETF working group in 2015, server push has been going
on ever since and continued to be kept in HTTP/3 [6] in 2022.

HTTP/2 server authority. In HTTP/2 and HTTP/3, a
client attributes authority to a server if the URI origin’s host
matches any of the hosts present in the server’s certificate
[2]. Although server authority can be lots of origins in

the certificate, the client always attributes server authority
to the current requesting URI tuple. However, the HTTP/2
server push is unique here. It can indicate the authority of
a push stream by specifying :authority pseudo-header.
Moreover, the browser can accept the push stream as long
as its :authority matches any origins in the certificate
according to the specification of RFC 9113 [7].

B. Signed HTTP Exchange

Signed HTTP exchange (SXG) is a delivery mechanism
that makes the browser authenticate the origin and integrity
of a resource without considering how it was delivered [8].
With the SXG, a publisher can safely make their content
portable, i.e., available for redistribution by third parties,
while still keeping the content’s integrity and attribution. The
most common practice of SXG is to prefetch and serve the
contents signed by the publisher through a cache. This boosts
cross-origin navigations from referer sites while also ensuring
the untampered contents as well as the proper attribution.
For instance, Google Search crawls and caches SXGs when
available and prefetches SXG that the user is likely to visit,
e.g., the first search result, to provide users with a faster page
load experience from the search results page. In 2018, Google
announced the support of SXG in Chrome 73 and later [9].
Since then, many other Chromium-based browsers have begun
to be available for SXG as well, e.g., Edge 79 and Opera
64 [10]. Some Content Delivery Network (CDN) vendors can
also configure SXG service [11].

Origin of SXG. Browser attributes the origin of an SXG
to request-url header as long as this URL is same-origin
with validity-url and the certificate in cert-url can
authenticate validity-url. Similar to server push, SXG
providers can also indicate the origin of a resource to any
domain in the certificate by specifying these headers.

C. Shared Certificate

SSL/TLS certificate is the digital identity card of a website.
In an HTTPS connection, one party can ensure the identity of
another party via the certificate issued by the trusted certificate
authorities (CAs), reducing the risks of man-in-the-middle
attacks. Nevertheless, it is inconvenient if one certificate can
merely authenticate one domain. Some organizations have
plenty of domains, which is a heavy burden to issue certificates
for each one. To issue, manage, and revoke an SSL/TLS
certificate more efficiently, the certificate can be shared by
multiple subjects. Specifically, a shared certificate uses the
SAN extension to include multiple alternate domains, and
each of these domains can be authenticated by the certificate.
For example, a certificate with a SAN list [*.google.com,
android.com] would be accepted by both www.google.com and
android.com.

Shared certificate issuance. The most crucial step in issu-
ing a certificate is domain ownership validation (DOV). When
issuing a shared certificate with multiple domains, CAs need
to verify the ownership of every domain. There are three ways
to perform DOV: (1) DNS mode. Add appointed DNS records

2

to the authoritative nameservers. This is the only case to issue
the certificate of wildcard domains; (2) HTTP mode. Write
a given file to the root directory of the website, e.g., /.well-
known/pki/ ; (3) Email mode. Click the received verification
link in the website administrator’s email. Besides, issuing a
certificate that can sign an SXG additionally needs the CA
to support the CanSignHttpExchanges extension. To the best
of our knowledge, only two CAs (Digicert and Google) are
now available for the SXG certificate and ask the domains to
configure the DNS CAA records1.

Certificate expiration. The expiration time is important for
both attackers and owners because it is the final backstop of
the compromised certificates. Although the CA/Browser forum
suggests that setting the lifespans of certificates to no more
than 398 days offers several benefits [12], the specific validity
period depends on issuers and the implementations of CAs. In
addition, the draft of SXG limits the lifespan of the certificate
with CanSignHttpExchanges extension to 90 days [13].

III. CROSSPUSH AND CROSSSXG ATTACK

This paper introduces a novel vulnerability that adversaries
can utilize shared TLS certificates in server delivery processes
to bypass SOP. The threat is brought by two server delivery
mechanisms, HTTP/2 server push and SXG, and we refer to
them as CrossPUSH and CrossSXG attacks, respectively. In
this section, we first present the threat model (Section III-A)
and concept (Section III-B). Then, we delve into the novel
security implications (Section III-C) and methodology (Sec-
tion III-D) of these attacks.

A. Threat Model

In this paper, we assume an off-path adversary with two
capabilities: First, an attacker can acquire a TLS certificate
shared with a victim’s websites. This requirement is feasible
in practice via common vulnerabilities such as unsecured
file uploads in the “/.well-known” directory [14] or an email
provider’s oversight in protecting the domain’s administrative
email addresses [15]. Besides, we propose two practical meth-
ods for attackers without any intrusion abilities to acquire
multi-domain certificates shared with victim’s websites in our
study: (1) Domain reselling. An attacker can register numerous
domains and issue a shared certificate for these domains, then
resell domains to victims while retaining the certificate (Sec-
tion IV-A Method-1); (2) Domain takeover. An attacker can
take over the dangling domains whose DNS records pointed
to discontinued CDN services, de-provisioned VPS IPs, or
expired domain names, and then issue a shared certificate
(Section IV-A Method-2). Second, the attacker can lure the
victim to visit the attacker’s website. This can be accomplished
through methods such as phishing or embedding an iframe on
a popular site. Notably, we do not require the attacker to be
in-path or on-path to intercept and sniff encrypted traffic.

For the victims, all users visiting attackers’ websites with
vulnerable browsers (Chrome, Edge, and others in Sec-
tion VI-A3) could be affected. They will be susceptible to

1https://github.com/google/webpackager/wiki/Certificate-Authorities

attacker.com

victim.com

SAN:
attacker.com
victim.com
victim2.com
victim3.com...

① acquire a certificate
shared with victim’s

websites
(Observation-3)

Browser

③ indicate script’s origin as

victim.com (Observatio
n-2)

④ Browser accepts traditionally cross-origin
script as same-origin (Observation-1) and
executes it when requesting victim.com

② lure users to visit attacker.com

Fig. 1: Attack concept of CrossPUSH and CrossSXG.

arbitrary XSS, cookie manipulation, and other attacks in the
context of the websites that are included in the attacker’s
shared certificate.

B. Attack Concept

CrossPUSH and CrossSXG attacks take advantage of three
key observations to bypass browser SOP protections, thus
enabling various cross-origin web attacks.

Observation-1: HTTP/2 server authority is less restrictive
than the browser’s same-origin policy. While both policies
indicate the resource’s origin, browsers define the same origin
based on identical URI tuples, whereas HTTP/2 considers any
domains listed in the SAN of the TLS certificate to be from the
same authority. Therefore, this discrepancy could compromise
the browser’s SOP protection when the browser’s origin is
reassigned to match the HTTP/2 authority.

Observation-2: Server push and SXG can specify the au-
thority of the resource in HTTP responses. Typically, the
authority of an HTTP response aligns with the request’s URI.
However, server push and SXG, two new features in the server
delivery process, can utilize the :authority pseudo-header
and request-url to reassign the resource’s authority to
any domains listed in the certificate’s SAN. Thus, a domain
can spoof the origin of another domain within the SAN list
of shared certificates to deliver resources and browsers will
accept them as legitimate resources under the target domain.

Observation-3: Misalignment between certificate and do-
main ownership exacerbates attacks. Previous work has shown
that multiple-domain shared certificates are common and these
domains are often managed by disparate entities [3]. In ad-
dition, there is no coercive measure to keep the certificate
and domain owner in line. Attackers can exploit common
web vulnerabilities or scenarios presented in Section IV-A
to acquire a certificate shared with others’ domains, thereby
launching our attacks to numerous victim websites.

As illustrated in Figure 1, based on the above observations,
the attack flow for both CrossPUSH and CrossSXG can
be summarized into four steps: (1) the attacker acquires a
shared certificate containing both attacker-controlled domains
(e.g., attacker.com) and victim domains (e.g., victim.com), as
detailed in Section IV-A; (2) the attacker can set up an HTTP/2
server or an SXG server on attacker.com using the shared
certificate, and lure users to visit; (3) the attacker delivers
a malicious cross-origin resource (e.g., a malicious script)
via server push or SXG, specifying the origin as victim.com;

3

(4) browsers check the authority of the attacker’s scripts and
recognize them as resources from victim.com. Consequently,
when users revisit victim.com, their browsers execute the
malicious scripts within the context of the victim.com.

C. Novel Security Implication

Notably, our attacks introduce novel security concerns com-
pared to previous works, as outlined below.

Implication-1: Enabling more practical web attacks with il-
legitimate certificates. Previously, acquiring a certificate would
only facilitate man-in-the-middle (MitM) attacks, which re-
quires the attacker to be on-path, but now it is straightforward
for an off-path attacker to execute web attacks via server push
and SXG, making it much easier to launch an actual attack
against users.

Implication-2: Increasing the attack surface of high-profile
sites. For instance, if an adversary wants to attack google.com,
he might typically look for vulnerabilities on this strictly pro-
tected site. However, our attacks expose more attack surfaces
by enabling the adversary to execute various web attacks
against google.com by compromising another domain, such
as admob-cn.com or a subdomain, that shares certificates with
google.com. Many of these domains are low-ranked websites,
which, as previous studies [16] have shown, respond more
slowly to security events like Heartbleed, thereby exposing
more risks of certificate breaches to enable our attacks.

Implication-3: Extending the attack duration time of some
short-lived vulnerabilities. Previous vulnerabilities like dan-
gling domain takeover will be invalid after the victim deletes
the stale DNS record (from hours to days). In contrast, our
attacks extend the attack duration to the certificate expira-
tion (796 days after removing the dangling records as we
demonstrate in Section IV-B). An attacker can issue a shared
certificate of dangling domains, and then leverage CrossPUSH
to continuously attack the dangling domains for more than two
years. Further, we also find a technique (Section IV-D) to make
victims difficult to revoke the acquired certificate themselves
which results in a persistent attack.

D. Attack Methodology

CrossPUSH and CrossSXG attacks exhibit fundamental
similarities but differ in execution details. Below, we elaborate
on the specific methodologies of each attack. Our threat model
assumes that an attacker has already obtained a certificate
sharing between attacker.com and victim.com and we would
demonstrate how an attacker can acquire the shared certificate
in Section IV-A.
CrossPUSH attack. Typically, browsers accept resources
that are pushed from the same origin as the requests. The
authority of the pushing server is determined by verifying
the SAN domains in the SSL/TLS certificates during TLS
connections. Furthermore, browsers assess the :authority
pseudo-header in HTTP responses to confirm the authenticity
of the resources. However, a malicious server could push
resources for other domain names sharing the same TLS
certificates by crafting a forged :authority header.

Key entities. Figure 2(a) presents the CrossPUSH attack
model, which comprises three key components: (1) A browser
equipped with a push cache; (2) An attacker in control of a
website, attacker.com, sharing a TLS certificate with victim
websites; (3) A victim website victim.com.

Attack details. To conduct a CrossPUSH attack, the attacker
first tricks users into visiting https://attacker.com, possibly via
phishing or embedding an iframe on a popular site. Then,
while sending a standard HTML response, the attacker uses
an HTTP/2 server push to send script.js, claiming its authority
as victim.com. This could be done by using Node.js’s HTTP/2
framework to directly set the stream’s :authority [17].
Since the authority of script.js (victim.com) aligns with the
origin specified in the shared certificate but does not match
the requested host (attacker.com), the browser accepts and
stores it in the push cache but does not apply it to the current
page. Afterward, the attacker can use the HTML <meta>
http-equiv attribute in the response stream to make the
browser request victim.com, leading the attack to take effect.
The dotted line in Figure 2(a) indicates that the following
request will not arrive at victim.com since the browser will
check the push cache first and find that the requesting host
matches the authority of script.js. Consequently, via Cross-
PUSH, the browser loads the script.js from the cache that is
actually sent by attcker.com. Although HTTP/2 server push
may be designed to permit cross-origin pushes, this feature
can be exploited by malicious attackers with access to shared
certificates to falsely present trusted authority for harmful
content, such as malicious scripts, thereby circumventing the
browser’s SOP protection.
CrossSXG attack. SXG is designed for publishers to dis-
tribute their web content via third parties or caches, enabling
browsers to securely serve cross-origin resources. Here, we
should claim that rather than discuss the aforementioned
capability of serving others’ cross-origin content via SXG, we
elaborate on how a website administrator can sign the SXGs
of other websites. Our threat model reveals a pressing concern,
akin to the CrossPUSH scenario: an illegal entity could create
and sign malicious web content as SXG, falsely presenting it
as originating from any victim domains in the SAN list of a
shared TLS certificate. This is achieved by manipulating the
request-url and validity-url headers.

Key entities. Figure 2(b) depicts the CrossSXG model,
which also comprises three parts: (1) A browser enabled
with SXG support; (2) A compromised website, attacker.com,
serving victim.com’s SXG and cert.cbor. Importantly, cert.cbor
represents the shared certificate in concise binary object repre-
sentation (CBOR) format [18], which is essential for verifying
the victim’s SXG; (3) A victim website victim.com.

Attack details. First, the attacker prepares malicious web
content signed as an SXG for victim.com. Then, they entice
users to visit https://attacker.com and deliver the SXG to
the browser. The browser then requests the cert-url from
the SXG headers for certificate validation, which, controlled
by the attacker, points back to attacker.com. This allows
the attacker to respond with cert.cbor containing victim.com

4

Browser

(compromised)
attacker.com

(SAN contains victim.com)

req https://attacker.com/

push script.js(victim.com)

victim.com

req https://victim.com

Browser’s push cache

script.js

html

(a) CrossPUSH attack. The attacker forges the authority of the push
stream to victim.com. Since the browser accepts all of the resources
that are authorized in the scope of SAN, the browser loads the script.js
that is actually sent by attacker.com from the push cache when the user
requests victim.com next time.

Browser

(compromised)
attacker.com

(Serve victim.com’s SXG
&cert.cbor)

req https://attacker.com/

SXG(victim.com)

victim.com

req “cert-url”

cert.cbor(victim.com)

verify OK, decode SXG
verify fail, req “request-uri”

(b) CrossSXG attack. The attacker forges two headers of the SXG,
”request-url” and ”validity-url” to victim.com. Since the browsers accept
all of the SXGs whose aforementioned headers are same-origin with the
domains in the SAN of the certificate, the browser decodes the SXG as
the victim’s web content but is actually crafted by the attacker.

Fig. 2: Details of CrossPUSH attack and CrossSXG attack

in the SAN. The browser checks if this certificate matches
the validity-url and whether the request-url is the
same origin as the validity-url. If verified, the browser
displays victim.com in the address bar and loads the attacker’s
content. If not, it would typically request victim.com. However,
as the attacker can tailor the SXG content, the verification
usually succeeds, rendering the request to the victim’s site
impossible, as indicated by a dotted line in the figure. Con-
sequently, the attacker with access to a shared certificate
(cert.cbor) can successfully sign an SXG for victim.com and
execute malicious content on the victim website’s context.

IV. ATTACK PRACTICALITY

In this section, we introduce a series of techniques to make
these attacks more practical and dangerous in the real world.
We propose (1) two common and exploitable cases to reduce
the demands on the attacker’s capability to acquire shared cer-
tificate (Section IV-A); (2) a novel insight on validation reuse
to extend attack duration time (Section IV-B); (3) an abuse of
AGP to reduce attack cost (Section IV-C); (4) a technique to
make illegitimate certificate irrevocable (Section IV-D).

A. Acquiring Shared Certificates without Intrusion

We propose two broadly applicable and exploitable meth-
ods that enable even a basic attacker, lacking any intrusion
capabilities, to meet the shared certificate condition necessary
to initiate our attacks.

Method-1: Domain reselling—issuing a multi-domain cer-
tificate and then reselling part of the included domains. Due
to the absence of mechanisms aligning certificate ownership
with domain ownership, domain reselling allows attackers to
retain the shared certificate while reselling domains included
in that certificate to another party. Thus, an attacker can obtain
a shared certificate through the following steps:

➀ The attacker purchases many domains (e.g., victim.com,
attacker.com) and issues shared certificates for them.
➁ The attacker popularizes domains included in the shared
certificate with many methods to increase the reselling proba-
bilities, such as exploiting blackhat search engine optimization
(SEO) platforms [19], promoting websites via social media
and domain resale marketplaces, or improving rankings in top
domain name lists [20].
➂ The attacker waits for these domains to be bought by
any potential victims. If a victim acquires the resold domains
before the certificate expires, the attacker successfully creates
attack conditions.

While domain reselling has become prevalent2, this resale
process not only grants all original domain owners access to
the attack conditions but also exposes anyone purchasing the
resold domains to our described attacks.

Method-2: Domain takeover—taking over dangling do-
mains and issuing shared certificates. Domain takeovers have
been demonstrated as a potent method for hijacking domain
names [21], [22]. This occurs when domain names point to
inactive cloud services, de-provisioned VPS IPs, or expired
domain names. As these targets are publicly available, attack-
ers can seize control of some victim domain names without
authority. Previous work [23] shows that once a domain
is taken over, attackers can circumvent domain ownership
validation (DOV) via HTTP mode when obtaining SSL/TLS
certificates. This enables them to issue a shared certificate that
includes both the hijacked domain and an attacker-controlled
domain, setting the stage for our attacks. We illustrate attack
requirements for different scenarios to launch domain takeover
in Appendix A Table V. The key steps to obtain a shared
certificate through domain takeover are shown below:

2https://www.name.com/zh-cn/blog/3-easy-ways-to-get-started-reselling-
domains

5

TABLE I: Validation reuse period of celebrated CAs

Digicert GlobalSign Entrust Let’s Encrypt Google

397 397 398 30 90
1 The certificate with SXG extension has validation reuse too.
Although there is no document to expose how long it is, our
experiment on Google CA shows that the reuse period lasts at
least 30 days.

➀ The attacker locates the victims (e.g., victim.com) by scout-
ing for dangling domains whose DNS records are pointing to
inactive cloud services (e.g., CDN services), de-provisioned
VPS IPs, or expired domain names.
➁ For each scenario, the attacker applies for the stale resources
(e.g., CDN-assigned endpoints like victim.cdnservice.com)
that are pointed by dangling DNS records of victim.com and
then configures the endpoints to route traffic from victim.com
to the attacker’s server. Consequently, the DNS resolution
would be as follows:

victim.com ⇒ stale resources ⇒ attacker’s web server
➂ With the dangling DNS records, a CA could connect to the
attacker’s server to fetch the challenge token during the DOV
of victim.com in HTTP mode. This enables the attacker to
issue a multi-domain certificate that covers both victim.com
and attacker-controlled domains, thereby successfully creating
the attack condition.

B. Extending Attack Duration via Domain Validation Reuse

Attack duration time significantly affects the practicality
of our attacks. Although the recommended validity period
for public TLS certificates has been reduced to less than
398 days [24], or in some cases even 90 days [25], our
recent findings indicate that a user-friendly approach, known
as domain validation reuse [26], can potentially extend the
duration of our attacks to a maximum of 796 days.

Domain validation reuse allows a certificate issuer to by-
pass DOV by reusing previously validated domain ownership
information. This approach, automatically activated after the
issuer has successfully passed validation in the recent past,
aims to ease the issuer’s burden and enhance usability. The
CA/Browser Forum has set the maximum period for validation
reuse at 398 days [26]. However, individual certificate author-
ities (CAs) have considerable discretion when implementing
this policy. The specific validation reuse periods for several
well-known CAs are detailed in Table I.

Nevertheless, it has been overlooked that validation reuse
not only extends the certificate’s lifespan but also potentially
grants the domain owner extended control over the certificate.
This aspect significantly increases the potential duration of
our proposed attacks. As shown in Figure 3, we assume
that the attack time span would be 398 - T days in the
absence of validation reuse, where “398” is the certificate
lifespan and “T” is the time an attacker waits for a victim to
purchase or gain control of the domains included in the shared
certificate. However, when employing validation reuse, the

Domain Validation Reuse
Period (398 days)

Certificate Lifetime (398 days)

certificate
expiration

t

Without
validation

reuse

T attack duration time 398 - T

Certificate Lifetime (398 days)

certificate
expiration

t

attacker issued the
shared certificate

T attack duration time 796 - T

last day to issue the
shared certificate

With
validation

reuse

attacker issued the
shared certificate

Fig. 3: Extending attack duration time. Validation reuse en-
ables the attacker to prolong the attack window to 796 - T
days, where T is the period that the attacker waits for victims
to get control of the domains in the shared certificate, e.g.,
buying the attacker’s resold domains.

attacker can issue shared certificates without DOV for another
398 days (solid red bar in Figure 3) following the initial
issuance. During this period, the shared certificate remains
firmly under the attacker’s control. Notably, domain owners
even cannot completely revoke the shared certificate, because
the attacker can continually reissue it as long as their account
remains within the validation reuse period. Moreover, if the
attacker reissues a new shared certificate on the last day of
the validation reuse period, the duration of the attack can
potentially be extended to a maximum of 796 days3.

Even worse, there is no established security protocol or joint
effort between domain registrars and certificate authorities
(CAs) in this context. To test its feasibility, we conducted
a real-world experiment. We registered a test domain from
Godaddy and issued a shared certificate for this domain autho-
rized by Let’s Encrypt. We then released the domain, making it
available to other customers. When the domain was available
again4, we acted as a potential victim and purchased the
domain through Namecheap. We then issued certificates using
another account via ZeroSSL and Let’s Encrypt, respectively.
Our findings are concerning: (1) Even when two accounts from
the same CA (e.g., Let’s Encrypt) control the same domain
simultaneously, this does not disrupt the process of validation
reuse; (2) Despite later revoking all issued certificates, the
original account can still bypass DOV to reissue certificates
due to validation reuse.

C. Reducing Attack Cost via AGP Abuse

In a domain reselling scenario (Method-1 in Section IV-A),
an attacker needs to acquire many domain names for attacks.
Therefore, minimizing the cost of these domain purchases
significantly enhances the attack’s viability. We find that Add
Grace Period (AGP) [27], a user-friendly feature of domain
registration, can be abused by attackers to facilitate this

3This is 120 days for CrossSXG attack because the lifespan (90 days)
and validation reuse period (30 days) of the certificate with CanSignHttpEx-
changes are shorter.

4The domain releasing time from a registry is tested to be 4 days in our
experiment.

6

process. AGP, supported by ICANN and domain registrars,
provides registrants the opportunity to return domain names
within 5 days without cost. Two typical cases of abuse are
domain tasting [28] and domain kitting [29]. Due to a
rise in abuse, ICANN implemented the AGP Limits Policy in
2008 [30], significantly curbing such incidents. However, the
rules are not strictly followed, and certain domain registrars,
including Godaddy5, Google6, and Namecheap7, still permit a
limited amount of refunds.

For the first time, we examine the security risks associated
with AGP abuse, specifically in the context of shared certificate
issuance. Attackers can purchase numerous domains from
registrars offering refunds, then issue shared certificates for
these domains. Subsequently, they release the domains during
the AGP and receive refunds. This strategy enables attackers
to acquire a shared certificate with multiple released domains
at no cost.

D. Making Illegitimate Certificate Irrevocable

A fundamental prerequisite for CrossPUSH and CrossSXG
attacks is the use of an illegitimately acquired shared certifi-
cate. If such a certificate is identified and subsequently revoked
by the victim, the attack becomes ineffective. However, we
discover that it is possible to hinder the victim’s ability to
revoke the certificate without the attacker’s consent.

Commonly, when requesting a CA to revoke a shared cer-
tificate, users must either be able to pass DOV for all domains
included in the certificate [31] or possess the private key of
the certificate8. If the attacker issues a new shared certificate
that encompasses both the victim’s and the attacker’s domains,
the victim would be unable to meet either of the revocation
conditions, rendering the illegitimate certificate non-revocable.
We have verified this problem leveraging a trusted CA (i.e.,
ZeroSSL) and our test domain names. Despite reporting our
security concerns about the existence of spoofing certificates
beyond our control through the CA’s official problem reporting
platform, the shared certificate could not be revoked. This
demonstrates that due to this technique, even if the victims
identify an illegitimate certificate, they cannot prevent Cross-
PUSH and CrossSXG threats.

V. REAL-WORLD EXPLOITATION

In this section, we discuss exploiting CrossPUSH and
CrossSXG. Once an attacker has a shared certificate, they
can launch a malicious website to target other domains in
the certificate. Since server push and SXG are rendered in
HTTP responses, the attacker can manipulate both HTTP body
and header to initiate various cross-origin web attacks by
exploiting CrossPUSH and CrossSXG.

5https://www.godaddy.com/en-sg/legal/agreements/refund-policy
6https://support.google.com/domains/answer/6000754?hl=en
7https://www.namecheap.com/legal/general/refund-policy/
8https://letsencrypt.org/docs/revoking/

A. Leveraging HTTP Body

HTTP bodies determine the main contents exhibited on
web pages. By crafting HTTP bodies, attackers could execute
UXSS or conduct phishing attacks.

Exploit-1: Universal cross-site scripting (UXSS) attacks.
Given the ability to forge origins and control front-end web
pages, a straightforward exploitation is the XSS attack. An
attacker can add a script tag into the response body, e.g.,
<script>alert(document.cookie)</script>, to
let the browser run arbitrary JavaScript on the victim’s website.
Such exploitation can steal a user’s cookie and initiate a money
transfer to an attacker’s account. Besides, our attack is the most
harmful UXSS which is independent of the target website.
Regardless of whether the target website has vulnerabilities,
is offline, or no longer exists, our attack still works. It is
worth noting that security policies like Content Security Policy
cannot prevent such attacks because browsers consider the
scripts from the same origin.

Exploit-2: Website phishing. The attacker can customize
the whole HTTP body to a phishing HTML, inducing victims
to hand over usernames, passwords, or other secret information
on a familiar website. It should be noted that our phishing is
hard to detect. For instance, if the attacker wants to phish the
users of example.com, he can disguise his malicious website
as example.com’s portal, leading users to click. Then, through
CrossPUSH or CrossSXG, victims will see the address in the
navigation bar rewritten to the example.com with the certificate
status showing secure (a lock). In addition, the page can be
spoofed to look exactly like example.com with only modifying,
e.g., the address of the submission form to the servers of the
attacker, thus completing the phishing attack imperceptibly.

B. Leveraging HTTP Header

Many HTTP headers carry security properties, with some
having been analyzed in previous works [32]. In our attacks,
exploitable headers should satisfy three basic conditions: 1)
response header, 2) cacheable, and 3) security-related. Upon
thorough inspection, we identified two stateful headers (i.e.,
Set-Cookie, Strict-Transport-Security) as ex-
ploitable, given their ability to modify client states or behav-
iors.

Exploit-3: Setting arbitrary cookies. The Set-Cookie
HTTP response header is used to send a cookie from the server
to the user agent, so that the user agent can send it back to
the server later to notify the state of the user, such as login
status or personal profile. This header has many attributes, the
attacker can set Domain to the victim domain, path to /,
and Expire to a distant future, to sustainably set the user’s
cookie. As the cookie is commonly used in today’s web access,
an attacker who is capable of setting an arbitrary cookie to
the victim websites can lead to disastrous impacts like session
fixation attack [33].

Exploit-4: Bypassing HTTP Strict Transport Security
(HSTS). The Strict-Transport-Security header in-
forms browsers that the site should only be accessed us-
ing HTTPS, and any future attempts to access it using

7

HTTP should automatically be converted to HTTPS. This
header is a pivotal security strategy that avoids SSL strip
and other types of man-in-the-middle (MITM) attacks, how-
ever, it can be bypassed by our attacks. The adversary
can set Strict-Transport-Security: max-age=0
to delete the HSTS of the victim domains on browsers.
Consequently, the browser can use HTTP to access the victim’s
websites, breaking the security practices of the websites.

Additionally, in the case of SXG, signing a file with the
aforementioned stateful headers is disallowed for security
reasons. However, we discover that the implementation of this
restriction is flawed and can be circumvented. Rather than
having browsers check for stateful headers, this verification
is performed by the official SXG web package provided by
WICG9. This approach overlooks the possibility of an attacker
not using the official tool but instead developing their own.
Therefore, we modified the web package for SXG and created
an SXG generator that does not check for stateful headers,
enabling us to launch CrossSXG by leveraging HTTP headers.

C. Leveraging Body and Header

Besides exploiting the HTTP body and header respectively,
the attacker can also use HTTP headers to control how the
body is parsed, combining them together to launch an attack.

Exploit-5: Malicious file download. An attacker can lever-
age the Content-Disposition header to indicate if the
content is expected to be displayed inline (as a web page,
default) or as an attachment. Since the attacker can also
control the HTTP body, he is able to arbitrarily specify
the content of the file and let the victim browser download
it as an attachment. More importantly, this header has an
attribute filename, which is capable of specifying the
file name as well as the file extension. As a result, the
attacker can use the ransomware or trojan as the HTTP
body and the Content-Disposition: attachment;
filename="instruction" as the header to make the
victim’s browser automatically download a file named “in-
struction”. From the victim’s perspective, this file is down-
loaded from an intended website with a reasonable name,
which seems to be secure. If the victim clicks the file,
his computer will be possibly implanted with a virus and
controlled by the attacker.

D. Attacking Multiple Targets with Single Click

Furthermore, the high concurrency of HTTP can be ex-
ploited to attack multiple targets with a single click. HTTP/2
supports numerous concurrent streams whose maximum num-
ber is limited by MAX Concurrent Stream (set as 128 in
default). For the CrossPUSH attack, an attacker can initiate
multiple push streams simultaneously, and each authority
header of the streams is forged to be one of the victim websites
in the shared certificate, enabling attacking numerous targets
at once. Regarding CrossSXG, it’s easier to achieve this goal
since CrossSXG merely needs the static request-uri to indicate

9https://github.com/WICG/webpackage

the target website, rather than the authority of the stream.
Therefore, an attacker can directly sign the SXGs of different
domains in the shared certificate and serve them on distinct
paths. At last, the attacker can use plenty of iframe to let the
browser request all of the SXGs, attacking multiple targets
with a single click.

VI. LARGE-SCALE EVALUATION

In this section, we conduct a large-scale measurement to
evaluate the real-world impact of our attack. The evalua-
tion mainly falls into two categories: one is the client-side
browsers’ behaviors for CrossPUSH or CrossSXG, and the
other is the server-side affected websites.

A. Client-side: Vulnerable Browsers

CrossPUSH and CrossSXG attacks are constrained by
browser behavior, as different browsers may react distinctively
to these two attacks. Additionally, the diversity and quantity
of vulnerable browsers greatly affect the impact of the attacks.
To find out how many client-side browsers are vulnerable, we
conduct a large-scale measurement of browsers’ behaviors.

1) Measurement Challenge and Solution: Considering the
wide variety of browsers used in our daily lives, it is com-
mon to have multiple browsers installed on different devices
such as smartphones, tablets, and computers. Furthermore,
the multitude of browser versions can lead to behavioral
inconsistencies across different versions. Thus, manually col-
lecting all the different browsers is a formidable task, posing
significant challenges for comprehensively evaluating client-
side browsers. This motivates us to develop PSChecker, an
integrated platform to conduct the client-side measurement
and help to analyze the browsers’ behaviors on server push
and SXG. By deploying the platform on high-traffic websites,
visitors will obliviously help us to automatically test their
browsers’ behaviors, increasing the range and diversity of the
browsers to complement our unmeasured test objectives.

Nevertheless, PSChecker may raise ethical concerns if we
directly use it to measure CrossPUSH and CrossSXG attacks
in the wild. Moreover, PSChecker only provides coarse-
grained access data, which may require a few supplements.
To address the above issues, we determined to accomplish
client-side measurement through a two-step process. First, we
utilize PSChecker to broadly measure the browsers’ feature
support for server push and SXG without any cross-origin
attack behaviors. The user’s access data will enable us to
discover more testing objectives and give us an overview of
browsers’ support for these two features. Second, we launch
a strictly controlled web environment to block other users’
requests and download all suspicious browsers locally to test
their behaviors on CrossPUSH and CrossSXG attacks. We also
manually supplement some data, such as the latest version of
the vulnerable browser, the older version of the invulnerable
browser, and the high-ranked browsers that were not tested,
etc., to enhance the comprehensiveness of the measurement at
a fine-grained level.

8

High-Traffic website Feature measurement
server

Log server

Users
① Users’ daily requests

② Respond iframe link
of feature
measurement server

③ Request
iframe

④ Return scripts for measuring
server push and SXG support

⑤ Support the feature:
 post success logs

⑥ Catch error:
 post failure logs

⑦ Post request logs

Fig. 4: Overview of PSChecker

2) PSChecker and Local Test: PSChecker takes full consid-
eration of ethics and does not exploit or steal any credentials
from its users. It just uses the legal server push and SXG to
measure the feature support and records User-Agent (UA)
to help us identify browser varieties and versions. Figure 4
shows the overview of PSChecker. It consists of three parts:
(1) High-traffic website. PSChecker needs more visitors to
include as many browsers as possible, so we embedded our test
site as an iframe on a high-traffic website from our industrial
partners; (2) Feature measurement server. An HTTP/2 server
returns scripts via server push and SXG for measuring feature
support when users request it. Besides, it records some basic
information like UA and sends logs to log servers; (3) Log
server. An HTTP server that processes post requests and
records success log, failure log, as well as the full log. These
logs will be used in the following analysis.

PSChecker workflow. First, users request our industrial
partner’s high-traffic website through their browsers. As a
traffic honey pot, the website not only returns the normal
HTML but also adds an iframe within the <body> tag of the
HTML, with the link source set to the feature measurement
server. The width and height of the iframe are set to 0 to make
it invisible, which aims to avoid affecting users’ browsing
experience. Second, the browser receives the response HTML
and then accesses the iframe link, directing the traffic to the
feature measurement server. After receiving the request, the
feature measurement server initiates server push and SXG with
scripts for measuring feature support. If the browser supports
the feature, it will execute the script and send the success log
to the log server. If the browser does not support the feature,
e.g., reject the push stream, the feature measurement server
will receive an error event. We can catch the error and post
the failure log to the log server. Last, since not all failures
result in an error event, for example, browsers without SXG
support do not have a corresponding error event. Therefore,
the feature measurement server will post all user requests to
the log server to maintain a full log for comparison. If the
behavior of a browser is neither in the success log nor in the
failure log, then this browser failed without an error event.

Subsequent local tests. After we automatically get the
result of browsers’ support for server push and SXG from
PSChecker, we then locally test the behaviors of suspicious
browsers on our attacks in a lab environment. We launch

an attack server (like attacker.com in Figure 1) to initiate
CrossPUSH and CrossSXG attacks with an XSS script. The
origin of the XSS script is set to another domain in the shared
certificate. Besides, in CrossPUSH, whether the IP address
of the requesting domain is the same as the authority header
will affect browsers’ behaviors. So, we further indicate the
origin of the pushed script to cross-ip domain and same-
ip domain, dividing CrossPUSH into cross-ip and same-
ip CrossPUSH. Moreover, we identify browsers from UAs
in the result of PSChecker and supplement uncovered top-
used browsers reported by Statcounter10 to the testing list.
We download different versions of browsers in the list to
three leading platforms (Windows, iOS, Android) from official
websites. At last, we use browsers to request the attack server
and analyze the behaviors.

3) Client-side Result Analysis: We deployed PSChecker for
30 days, from Nov 15 to Dec 15, 2023. There were 10,072
visits to our PSChecker in 30 days. Measurement results
cover 2,873 different user agents and more than 30 different
types of browsers after de-duplication. We tried our best to
figure out the browser type from each UA and supplement
the missing top-used browsers in Statcounter. Finally, we
identified and systematically tested 26 browsers at a granular
level across different software versions and operating systems
in total. They were categorized into three groups: (1) Top-used
browsers, (2) Default browsers on mobile, and (3) Celebrated
apps.

Top-used browsers: 11/14 of them are vulnerable to
at least one of our attacks. The upper part of Table
II includes top-used browsers reported by Statcounter and
other well-known browsers identified from UA. We evaluated
these browsers’ behaviors on three popular platforms, i.e.,
Windows, iOS, and Android. The result shows that the latest
versions of most browsers (11/14) by the time of testing
are vulnerable to at least one of our two attacks on at least
one platform. Browsers’ behavior on iOS is the most special
case: except for the UC browser being fully vulnerable to
CrossPUSH (we will analyze this finding later), other browsers
are either partially vulnerable or not vulnerable. That is
because Apple Inc. requests all browsers on iOS to use Webkit
kernel, making browsers on iOS react the same as Safari. In
terms of CrossSXG, the latest versions of most browsers are
vulnerable. Safari, Firefox, and IE are not vulnerable since
they do not support the SXG feature now. Whether this feature
will be developed in the future and suffered from our attack
is unknown. For CrossPUSH, UC, QQ browser (Win), and
Instabridge (Android) are fully vulnerable, while the rest of
the browsers are partially vulnerable. The reason is that most
developers of these browsers use Chromium implementation,
and Google removed the server push feature in Chromium106.
So, the latest version does not support server push, but the
old versions are vulnerable. Webkit-based safari only suffered
from same-IP CrossPUSH until version 17, which required
that the IP address of the victim website and the currently

10https://gs.statcounter.com/browser-market-share

9

TABLE II: Browser behaviors on CrossPUSH and CrossSXG

Top-used Browsers
CrossPUSH CrossSXG

Browser Win iOS Android Win iOS Android
Chrome G# G# G# #
Safari - G# - - # -
Edge G# G# G# #

Firefox # G# # # # #
Opera G# G# G# #

UC # # #
360 G# G# #
IE # - - # - -

Yandex G# G# G# #
QQ browser G# G# #

CocCoc G# - G# -
Whale G# G# G# #

Instabridge - G# - #
Xunlei G# G# #

Default Browsers on Mobile
Samsung - - G# - -
Huawei - - - -
Oppo - - - -

Xiaomi - - G# - -
Vivo - - - -

1 The red bar symbolizes that the browser’s latest version is vulnerable
to at least one of our attacks.
2 denotes that the browser is vulnerable in the latest version;
3 #denotes that the browser is not vulnerable;
4 G#denotes that the browser is partially vulnerable, e.g., vulnerable in
the old versions or just vulnerable to same-IP CrossPUSH;
5 - denotes that the browser is not supported on this platform.

connected website should be the same, otherwise, it would
not use cross-origin pushed assets. Besides, iOS also no
longer supports the server push feature in the latest version
17. In summary, invulnerable browsers or partially vulnerable
browsers are caused by the temporary lack of support for SXG
or server push, while supported versions other than Firefox and
IE are all vulnerable, which is alarming.

Default browsers on mobile: five leading mobile
browsers are vulnerable. Mobile browsers contribute more
traffic than desktop browsers worldwide11, so we systemati-
cally tested the behaviors of default browsers on mobile. We
collected 5 leading mobile phone manufacturers in the world12

(Apple Safari has been presented in the upper part), as shown
in the lower part of Table II, all of the tested default browsers’
latest versions are vulnerable to at least one of our attacks,
posing a significant threat to the mobile users. It should be
noted that many mobile applications will open the URL link
in the default browser, which increases the possibility of the
users being attacked.

Celebrated applications: vulnerable Webviews spread
the threat to apps. Apart from the browser, our PSChecker

11https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
12https://www.globalbrandsmagazine.com/top-10-mobile-brands-in-world/

TABLE III: Celebrated apps

CrossPUSH CrossSXG
App Android iOS Android iOS

Baidu #
Quark # #

Instagram G# G# #
Wechat G# G# #
QQmail G# G# #
Weibo G# G# #
Tiktok G# G# #

1 All symbols have the same meaning as Table II.

found that lots of apps also have built-in browsers that are
susceptible to our attacks. Thus, we further tested them at a
fine-grained level. As shown in Table III, while all of them are
vulnerable, Baidu and Quark behave distinctively compared to
other apps, which we will analyze later. Notably, the rest of
the apps are partially vulnerable to CrossPUSH because these
apps’ behaviors vary from devices in our test (e.g., succeed
on Huawei Mate 50 but fail on Xiaomi 10 pro). We think the
reason is these apps depend on the Webviews of the user’s
devices. Unfortunately, the default browser on mobile reflects
the behaviors of Webview in general, considering that many
devices have insecure default browsers, our attacks will affect
a large number of apps.

Software libraries: some libraries and software sup-
ply chains are vulnerable. We observed that UC, Baidu,
and Quark are vulnerable to the CrossPUSH attack on iOS,
behaving distinctively compared to other browsers or apps,
even though they indeed use the Webkit kernel that is forced
by Apple. We consider the main reason is that the network
requests are taken over from Webkit by the developers. This
viewpoint is verified by the developers of the Baidu App, who
used the Chrome-Net library to take over the network requests.
This critical finding reveals that vulnerable libraries may also
lead browsers to suffer from our attacks, and the software
supply chains of browsers may be vulnerable.

B. Server-side: Affected Websites

1) Measurement Objectives: In this part, we measure how
many websites are potentially threatened by our attacks. Con-
cretely, within our attacks, the websites that can be included
in the shared certificates of attackers, are the victim websites.
However, given the diverse methods of acquiring shared cer-
tificates, we cannot evaluate all situations. As a result, we
make clear our measurement objectives as the following three
typical categories of affected websites.

Reselling domains. These affected domains indicate the
domains once resold from attackers to victims. As we describe
in Section IV-A Method-1, an attacker can issue a multiple-
domain shared certificate first and resell domains to victims.
Subsequently, these resold domains can be directly targeted by
the original domain owners with our attacks until the shared
certificates expire.

10

Dangling domains. These affected domains indicate the
domains whose DNS records point to applicable public ser-
vices that can be hijacked by any attackers. As shown in
Section IV-A Method-2, an attacker can take over these
dangling domains and issue the shared certificate. Then, these
dangling domains will be under our attacks for more than two
years even after the dangling records are removed.

Cert-sharing domains. These affected domains indicate the
top websites that are included in the existing certificates’ SAN
lists of other peer websites. For instance, google.com is a cert-
sharing domain since it is included in the certificate of other
websites like admob-cn.com. Because peer websites hold the
shared certificate, these cert-sharing domains can be directly
attacked by peer websites using CrossPUSH and CrossSXG.
More importantly, attackers can compromise a less secure peer
website first, get the shared certificate, and launch our attacks
against these cert-sharing domains.

2) Measurement Methodology: We measure three types of
affected websites in different ways, as the following:

Measuring reselling domains. We use WHOIS history data
to measure how many of the Tranco Top 1M domains have
experienced reselling within our attack window (796 days),
disclosing domains that are subject to potential exploitation
by the original domain owners. Firstly, since we cannot
analyze anonymous WHOIS, we excluded as much anonymous
WHOIS data as possible through keywords [3]. Secondly, we
use three strict conditions to filter out the reselling domains:
(1) Three main registrant’s information has been changed; (2)
Levenshtein similarity [34] between old registrant organiza-
tion and new one was less than 0.3, which aims to prevent
some tiny changes in one entity, e.g., from Google to Google
LLC; (3) Two reselling period (createdDate to expiresDate)
does not overlap and the interval between them is less than
our attack window (796 days). Domains that meet these three
strict conditions are considered as reselling domains affected
by our attacks.

Measuring dangling domains. To identify dangling do-
mains in the wild, we utilized the state-of-the-art tool, Host-
ingChecker [22], for large-scale measurement. This tool
primarily targets public hosting services susceptible to domain
takeovers. However, some of the services (e.g., OSS) are not
exploitable for issuing TLS certificates and launching our
attacks. Through manual analysis, we identify three scenarios
feasible for forging certificates: (1) Dangling DNS records
pointed to CDN services; (2) Dangling A records pointed
to applicable virtual private server (VPS) IPs; (3) Dangling
canonical name (CNAME) records pointed to unregistered
domains. To this end, we extend HostingChecker to assess
these specific situations. For case (1), we supplement with
more vulnerable CDN services by manually testing all of
the CDN vendors from CDN planet13 since HostingChecker
misses some vendors and several CDNs like Bunny do not
allow certificate issuance in our tests. By adding the outdated
CDN service fingerprints to the config of HostingChecker,

13https://www.cdnplanet.com/

TABLE IV: Overall result on server-side affected websites

Reselling Dangling Cert-Sharing

Scope Top 1M Top 1M and subdomains Top 1K
Count 11741 4919 829

we can directly measure this case. For case (2), we utilize
HostingChecker to resolve every domain to IP address. Then,
we check whether the IP belongs to three main VPS providers,
i.e., AWS, Azure, and Aliyun. At last, we refer to the liveness
detection method in previous work [23] to find if the pointed
VPS is applicable. For case (3), we just make a WHOIS
request to every CNAME record resolved by HostingChecker
and inspect whether there is an unregistered domain.

Measuring cert-sharing domains. We scope this measure-
ment to the cert-sharing domains in Tranco Top 1K. At a high
level, we find out which website’s TLS certificate contains
Tranco Top 1K websites and whether there are high-ranked
domains included in the shared certificates of low-ranked ones,
revealing the security degradation of top websites. Given the
extensive domain landscape, acquiring and analyzing all of
the domain’s certificates proves inefficient. As a result, we
should quickly locate the relevant domains of the Top 1K
sites and continue the measurements within this pruned range.
Our key insight is that the domains in the SAN list of Top
1K websites’ certificates must have a strong association and
be possible to share certificates with Top 1K. So, we take
measurements in the following steps: (1) Collecting “related”
domains in certificates’ SAN of Top 1K sites. We first establish
a connection on port 443 for each Top 1K site and utilize the
Python SSL library to extract the certificates from the context,
capturing the domains in the SAN from each certificate as the
fundamental dataset; (2) Constructing relevant domain dataset.
Secondly, We expand the data in the form of wildcards from
the fundamental dataset by recursively crawling subdomains.
For subdomain crawling, we employ various methods to crawl
as many subdomains as possible, including searching for
subdomains in HTTP response, Certificate Transparency log
(crt.sh), and passive DNS (from our industrial partners). We
use this augmented dataset as the relevant domain dataset;
(3) Constructing the Top 1K dependency dataset. Then, we
use the method of step (1) again to retrieve certificates of
relevant domains and inspect whether their certificates’ SAN
lists contain Top 1K websites; (4) Acquiring rank dependency.
Consequently, we search the rank of the domains that share
certificates with the Top 1K websites from both Tranco Top
1M and Tranco Top 1M (with subdomains) to find the rank
dependency phenomenon. We supplement the Tranco rank
(with subdomains) to ensure the fairness of our evaluation
since lots of domains are not apex domains.

3) Server-Side Overall Results: Overall results are shown
in Table IV. Specifically, at least 11,741 Tranco Top 1M
domains were once resold within our attack window, which
could be attacked by original domain owners. In a month,

11

4,919 dangling domains (including domains from celebrated
companies, like Microsoft as we present in Section VI-C) can
be compromised by us and we can launch CrossPUSH to these
websites even for two years after they are not ”dangling”.
Besides, 829 (82.9%) of Tranco Top 1K domains are cert-
sharing domains that are suffering security downgrades.

4) Result Analysis of Reselling Domains: Finding-1: Do-
main reselling is a widespread practice, with even many
high-ranking domains having been resold. By carefully
analyzing the WHOIS history data, we identified 1 domain in
Tranco Top 1K, 59 domains in Top 10k and 11,741 domains in
Top 1M have been resold before. They all have been changed
hands from one person/organization to another within our
attack window (796 days). Notably, domain reselling can also
threaten corporate websites. For example, our measurement
showed that the owner of ftstatic.com (Tranco rank 3895 on
Nov 18, 2023) once changed from foodtraders.com.au Pty Ltd
(an Australian food company) to Flashtalking (an American
advertising agency). Even worse, the community is unaware
of the security risks posed by domain reselling at all, and has
even developed numerous domain reselling platforms14. These
discoveries demonstrate that our attacks will pose a novel and
serious threat to the prevalent domain reselling.

5) Result Analysis of Dangling Domains: Finding-2: The
amount of exploitable dangling domains is large. We
measured the dangling domains of Tranco Top 1M and its
subdomains 12 times (a month) to reveal how many websites
were threatened by our attacks due to temporary dangling DNS
records. For (1) dangling DNS records pointed to applicable
CDN services, 19 domains can be exploited by us. For (2)
dangling A records pointed to applicable VPSs, 3,952 domains
were exploitable, of which 2,513 domains’ A records were
pointed to AWS VPSs, 788 to Azure, and 651 to Aliyun. For
(3) dangling CNAME records pointed to unregistered domains,
we found that 948 domains’ CNAMEs were pointed to unreg-
istered domains. Attackers can acquire the shared certificate
of these dangling domains by merely applying for the services
or buying the unregistered domains. As a result, dangling
domains are very common, which demonstrates that a large
number of websites are affected by our attacks.

Finding-3: The duration of our attack is commonly
longer than traditional domain takeover. Moreover, we ex-
plored the existence duration of these exploitable dangling do-
mains. For example, by delving into the 948 dangling domains
whose CNAME records pointed to unregistered domains, we
found that they are pointing to 162 unregistered apex domains
after de-duplication. Through analyzing the WHOIS historical
data, we statistically obtained that the median number of days
from the expiry time of each unregistered domain to the
start time of our measurements was 148 days. At the end of
the one-month measurements, only 2 once-dangling domains
were still pointing to unregistered domains, and almost all
other dangling DNS records were removed or the domains
they were pointing to were registered. This implies that most

14https://www.resellerspanel.com/domain-names/

dangling domains cannot be hijacked after six months, which
is also demonstrated by the previous study on dangling domain
lifecycle [22]. Such results prove that our attack poses a
more significant threat to dangling domains, as we extend the
duration of domain takeover attacks, which usually tend to be
invalid within six months, to up to 796 days.

6) Result Analysis of Cert-Sharing Domains: The result
painted a bleak picture of certificate sharing and security
dependency. Although these issues cannot let an attacker ob-
tain the shared certificate directly, the analysis of cert-sharing
domains demonstrated how CrossPUSH and CrossSXG can
increase the attack surface of high-profile sites. For example,
instead of looking for vulnerabilities in strictly protected top
sites, the adversary can compromise less secure websites
that share certificates with these sites first, and launch our
attacks against these high-profile cert-sharing domains with
the acquired certificates. Therefore, we analyze the current
situation of shared certificates below.

Finding-4: 829 Tranco Top 1K websites are included
in the shared certificates of low-ranked websites. By
crawling the subdomains, we discovered 99,827 fully qualified
domain names (FQDNs) potentially relevant to Tranco Top
1K domains and eventually confirmed that there were 45,930
domains sharing certificates with the top 1K websites. Among
these peer domains, 16,950 domains were the subdomains of
the top 1K domains and the rest were the non-subdomains.
It shows that many high-profile websites not only rely on the
security of their subdomains but also rely on non-subdomains,
which may belong to acquired companies, subsidiaries, or even
distinct organizations. In addition, as shown in Figure 5, most
websites sharing certificates with Tranco Top 1K were out of
Tranco 1M. For instance, 43,594 / 45,930 (94.9%) domains
were out of Tranco (only apex) 1M while this was 39,436 /
45,930 (85.9%) in Tranco (withsub). Actually, 953 and 829
of the Top 1K websites were included in the certificates of
domains ranked out of the Top 1M according to these two
domain rankings.

This existing ecosystem of certificate-sharing raises two
major concerns: (1) Many companies do not always update
their certificates when their acquired companies have changed
ownership, which was confirmed by Baidu. After receiving
our report, they noticed that some of their acquired com-
panies became independent but still held certificates shared
with Baidu’s domains, which brought potential threats. (2)
Certificate sharing leads top-ranked sites to suffer security
degradation. Generally, the lower-ranked sites are relatively
less secure, since security practices may act as ranking sig-
nals15 and previous study [16] demonstrated that low-ranked
websites react more slowly than high-ranked sites to security
events like Heartbleed. Therefore, attackers are more likely to
compromise these less secure sites, acquire certificate private
keys, and launch attacks on high-profile sites.

15https://developers.google.com/search/blog/2014/08/https-as-ranking-
signal

12

Out1M: 39436 (85.9%)Out1M: 43594 (94.9%)

Fig. 5: Rank distribution of the domains that share certificates
with Top 1K websites. Most of the domains sharing certificates
with Top 1K are ranked out of 1M.

C. Case Study: Attack Microsoft’s Domain

To demonstrate the threat of our attacks in the real world,
we analyzed a domain from Microsoft. We found that the
CNAME record of 14.au.www.download.windowsupdate.com
(a Microsoft’s domain) was pointing to an unregistered
domain au.download.windowsupdate.qtlcdnect.com. So, we
bought qtlcdnect.com from Godaddy. Due to ethical con-
siderations, we did not continue the exploitation. If we
were malicious attackers, we could set the A record
of au.download.windowsupdate.qtlcdnect.com to our server.
Then, we can issue a certificate of our own domain shared with
14.au.www.download.windowsupdate.com in HTTP mode.
With the shared certificate, we can successfully launch Cross-
PUSH attacks on this domain. As this domain serves as a
download site for Windows update files, we can initialize the
malicious file download attack to let the victims who request
the malicious website (disguised as a Windows update portal)
receive a malicious file. Because the browser shows that the
file is indeed downloaded from Microsoft’s official website,
victims are then likely to execute it, thus being implanted with
a trojan horse or virus. Remarkably, compared to traditional
domain takeover, our attacks will remain effective for a
maximum duration of 796 days, even after Microsoft removes
the dangling DNS records.

VII. DISCUSSION

A. Mitigation

The root cause of our attacks stems from two primary
factors: (1) Relaxation of the browser’s origin in HTTP/2 and
HTTP/3. As server push and SXG can indicate the origin of
the resources to all domains in the SAN list of multi-domain
shared certificates, the boundary of the browser’s origin is
changed on these two features. This relaxation can com-
promise the SOP protection, which leads to various attacks.
(2) Misalignment between certificate and domain ownership.
Currently, there are no robust mechanisms to ensure that
certificate ownership aligns with domain ownership. In our
analysis, there are various ways in which an attacker can get
a certificate for a domain that does not belong to him, making
the attack condition of shared certificates can be fulfilled in

practice. As server push and SXG overly trust the certificate
owner’s control of the domains in the certificates, the attacks
can seriously threaten the real world. To defend against our
attacks, we propose the following mitigations:

Enforcing consistent authority in browsers to mitigate
CrossPUSH. To mitigate CrossPUSH attacks, browsers should
detect and reject server pushes where the authority of the push
stream does not match the origin of the current connection.
This includes preventing such pushes from being cached. Ad-
ditionally, we suggest browsers adhere to the recommendations
of RFC 9110 [2], i.e., perform a secondary DNS query to
check that the origin’s host contains the same server IP address
as the established connection in HTTP/2 and HTTP/3.

Enforcing single-domain certificates to mitigate
CrossSXG. In terms of CrossSXG, we suggest maintaining
its cross-origin delivering ability but deleting its cross-origin
signing ability, i.e., an SXG provider should not use a
multiple-domain shared certificate to generate SXG. Since
verifying the attribution of SXG resources only needs single-
domain certificates, browsers can just reject to decode the
SXG that is signed by a shared certificate.

Inspecting certificate status in domain registration. To
mitigate the risk of attackers reselling domains while retain-
ing the certificates, domain buyers should inspect Certificate
Transparency (CT) logs when registering new domains. Reg-
istrars should also assist by reminding customers to check the
certificate status of domains being transferred, and potentially
even notifying CAs directly.

Revoking shared certificate upon requests from domain
owners in SAN lists. Given the potential for attackers to use
tactics (as described in Section IV-D) that prevent certificate
revocation, CAs should facilitate the removal of domains from
shared certificates at the request of domain owners listed in
the SAN. Since revoking the shared certificate may affect the
current use, CAs should also notify the current holders of
the shared certificate and assist them in renewing a certificate
without the removed domains.

B. Ethical Consideration and Responsible Disclosure

Ethical consideration. We take the utmost care of potential
ethical issues. (1) In terms of client data collection, our
client-side measurement is conducted in collaboration with
an industrial partner who deployed a measurement script on
their website. First, the script is designed solely to determine
whether a client supports server push and SXG, and to
log the browser’s User-Agent string. No other potentially
sensitive client attributes are sent or stored. Second, the partner
company includes a consent mechanism at login and sign-
up, informing users that their browser features would be
measured. Third, the measurement script and collected data
are also rigorously reviewed by our partner company to ensure
it cannot track users or affect user privacy or experience.
Notably, all websites and servers are under the company’s
control, and we do not participate in deployments. At last,
the client-side attack tests are locally conducted on our own
websites with web application firewalls to strictly block other

13

traffic, which does not affect any other users or websites; (2)
In terms of server-side measurement, we limit the scanning
rate to minimize the impact on real-world servers; (3) In
terms of disclosure process, companies encourage security
tests through bug bounty programs, and we carefully follow
disclosure guidelines when disclosing issues to vendors and
domain owners.

Responsible disclosure. We have reported these security
problems to vulnerable browsers and affected websites. Up to
now:

• Huawei acknowledged our report and has confirmed the
vulnerability. They have updated their browser applica-
tion to 14.0.4 to prevent our attacks.

• Baidu was interested in the attacks and had an in-
depth discussion with us about the specifics. They have
confirmed the vulnerability and will arrange a fix for this
problem in the next version.

• Xunlei browser acknowledged our report and has con-
firmed the vulnerability and will fix this problem in the
next version.

• Google acknowledged the vulnerability and is still in
discussion on how to address this issue.

• Microsoft acknowledged our report and replied that they
would remove the dangling DNS record of the affected
websites later.

C. CDN Analysis

Content Delivery Networks (CDNs) might exacerbate our
CrossPUSH attack, making it more severe and widespread.
With CDNs, end-to-end HTTPS connection is split into two
parts: the front-end communication between client and CDN
surrogate servers, and the back-end communication between
CDN surrogate servers and original web servers. Since surro-
gate servers always use shared certificate [35] and some CDNs
even merge different entities’ domains into one certificate
[36], these naturally shared certificates of CDNs in front-end
connections potentially create an avenue for attackers to launch
CrossPUSH attacks.

For instance, Fastly CDN uses a wildcard shared certifi-
cate to support HTTP/2 in TLS services16, as long as the
surrogate servers support forwarding HTTP/2 push stream to
clients, an attacker can push scripts to any other websites
in *.freetls.fastly.net as all of them are authorized by the
shared certificate on Fastly surrogate server. To evaluate this
phenomenon, we investigate nine prominent CDNs and find
that HTTP/2 features have not been well-supported. Specifi-
cally, certain CDNs, such as Amazon Cloudfront and CDN77,
do not provide HTTP/2-to-origin support. Some CDNs, like
Cloudflare and Fastly, do not forward HTTP/2 push streams.
Moreover, CDNs like Tata Communications have not imple-
mented any form of HTTP/2 support at all. However, there is a
growing trend within the community towards embracing those

16https://docs.fastly.com/en/guides/setting-up-tls-on-a-shared-fastly-
domain#support-for-http2-ipv6-and-tls-12

advanced features, e.g., Go programming language has intro-
duced client-side support for HTTP/2 server push recently17.
This trend reveals that the landscape of CDN support for these
features may evolve, possibly influenced by vulnerabilities
highlighted in our study. Furthermore, we suggest CDN ven-
dors consider our attacks when integrating HTTP/2 features in
the future, and the recommendations outlined in Section VII-A
can assist CDNs in preventing these potential issues.

VIII. RELATED WORK

A. CrossPUSH and CrossSXG

Jake’s blog [37] first described that HTTP/2 server push can
push cross-origin resources to other domains in a certificate.
However, he only briefly mentioned it and did not conduct an
in-depth study. The real-world security threats, exploitation
methods, and attack conditions of this feature are not yet
known. As for SXG, Andrew Ayer [38] exposed in the draft
discussion stage that this feature will enable the attacker who
has obtained the certificate to launch an off-path attack on
the victim’s website and gave several examples of obtaining
illegitimate certificates in the past few years. Nonetheless, this
security issue has not been systematically studied. In contrast,
we provide a detailed and in-depth study of CrossPUSH
and CrossSXG attacks, along with their exploitations and
practicality evaluations in the real world.

B. Other Attacks of Shared Certificate

Previous study shows that it is common for administrators
to deploy shared certificates across multiple services, possibly
without consideration to cross-protocol attacks [39]. For
instance, a MitM attacker can redirect the HTTP request to
an FTP server that has a certificate compatible with the web
server. If the FTP server is error-tolerant, it will reflect the em-
bedded JavaScript to the client in an error message, making the
exploitable browser execute it within the context of the original
request. Another work leverages the shared TLS certificate to
launch the HTTPS context confusion attack [32]. By rerouting
encrypted traffic to another flawed server that shares the TLS
certificate, attackers can bypass the security practices, hijack
the ongoing HTTPS connections, and subsequently launch
other attacks, including phishing and payment hijacking. We
should note that all of these attacks need the adversary to
have the privilege of rerouting the traffic, and the exploitable
server should have some flaws, e.g., not adhering to the best
HTTPS practices. On the contrary, the attacker with a shared
certificate can launch off-path web attacks on other people’s
websites via CrossPUSH and CrossSXG, even when the target
website does not have any vulnerability or is not online.

IX. CONCLUSION

We propose how an off-path attacker only with the shared
certificate can launch cross-origin web attacks via HTTP/2
server push and SXG, along with a comprehensive study
of their practicality in the real world. On the client side,

17https://go-review.googlesource.com/c/net/+/181497

14

11/14 top-used browsers, including Chrome and Edge, are
vulnerable to at least one of our attacks, and the threat even
spreads to numerous apps. On the server side, we show that
three exploitable cases, reselling domains, dangling domains,
and cert-sharing domains are prevalent. We consider that the
essence of this security problem is server push and SXG, two
emerging features with the ability to indicate server authority,
can leverage the inconsistencies between browser origin and
HTTP/2 authority to break the same origin protection, enabling
an adversary to attack any domains in his illegitimately
acquired shared certificate. We expect our work to raise
awareness of this problem and set off further discussion among
practitioners and researchers. We also envision our work to
motivate the browser vendors, domain registrars, and CAs to
collaborate on operational efforts to address the issues in the
current practices.

ACKNOWLEDGMENT

We thank the anonymous reviewers and our shepherd for
their insightful feedback that helped improve the quality of
the paper. We thank Hui Jiang, Biao Tian, Hao Mo, and
Hua Lin from Baidu for their constructive comments and
generous provision of high-traffic websites for conducting our
measurement. We also thank our industry partners from Qi-
ANXIN for their support of passive DNS data. We are grateful
to Yihang Wang, Keran Mu, and Run Guo for their peer review
and helpful suggestions. This work was in part supported by
the NSFC #62272265. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of their
employers or the funding agencies.

REFERENCES

[1] A. Barth, “The web origin concept,” RFC, vol. 6454, pp. 1–20, 2011.
[Online]. Available: https://doi.org/10.17487/RFC6454

[2] R. Fielding, M. Nottingham, and J. Reschke, “RFC 9110: HTTP
semantics,” 2022. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc9110.html#section-4.3.3

[3] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M. Maggs, A. Mis-
love, and C. Wilson, “Measurement and analysis of private key sharing
in the https ecosystem,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 628–
640.

[4] A. Delignat-Lavaud and K. Bhargavan, “Network-based origin confusion
attacks against HTTPS virtual hosting,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 227–237.

[5] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol
version 2 (HTTP/2),” 2015. [Online]. Available: https://datatracker.ietf.
org/doc/html/rfc7540

[6] M. Bishop, “RFC 9114: HTTP/3,” 2022. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc9114

[7] T. Martin and B. Cory, “RFC 9113: HTTP/2,” 2022. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc9113.html#name-server-push

[8] D. M. Katie Hempenius, “Signed exchanges (SXGs),” 2020. [Online].
Available: https://web.dev/articles/signed-exchanges?hl=en

[9] K. Yasuda, “Signed HTTP exchanges,” 2018. [Online]. Available:
https://developer.chrome.com/blog/signed-exchanges/

[10] L. Fyrd, “Can I use SXG?” 2023. [Online]. Available: https:
//caniuse.com/?search=SXG

[11] O. Y. Marc Lamik, “Improve site load times and seo with one-click
support for signed exchanges on google search,” 2021. [Online].
Available: https://blog.cloudflare.com/automatic-signed-exchanges/

[12] CA/Browser Forum, “Ballot SC22 – reduce certificate
lifetimes (v2),” 2019. [Online]. Available: https:
//cabforum.org/2019/09/10/ballot-sc22-reduce-certificate-lifetimes-v2/
#Ballot-SC22-Reduce-Certificate-Lifetimes-v2

[13] J. Yasskin, “Draft-yasskin-http-origin-signed-responses-
latest,” 2023. [Online]. Available: https://wicg.github.
io/webpackage/draft-yasskin-http-origin-signed-responses.html#
name-status-of-this-memo

[14] M. Sadique, “Abuse of hidden “well-known” directory in https
sites,” 2019. [Online]. Available: https://www.zscaler.com/blogs/
security-research/abuse-hidden-well-known-directory-https-sites

[15] R. van Elst, “How I got a valid ssl certificate for my ISP’s main
domain, xs4all.nl,” 2015. [Online]. Available: https://raymii.org/s/blog/
How I got a valid SSL certificate for my ISPs main website.html

[16] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. D. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson, “The
matter of heartbleed,” in Proceedings of the 2014 Internet Measurement
Conference, IMC 2014, Vancouver, BC, Canada, November 5-7, 2014,
C. Williamson, A. Akella, and N. Taft, Eds. ACM, 2014, pp. 475–488.
[Online]. Available: https://doi.org/10.1145/2663716.2663755

[17] “Node.js v20.10.0,” 2023. [Online]. Avail-
able: https://nodejs.org/docs/latest-v20.x/api/http2.html#
http2streampushstreamheaders-options-callback

[18] C. Bormann and P. Hoffman, “RFC 8949: Concise binary object
representation (CBOR),” 2020. [Online]. Available: https://www.
rfc-editor.org/rfc/rfc8949.html

[19] K. Du, H. Yang, Z. Li, H. Duan, and K. Zhang, “The ever-
changing labyrinth: A large-scale analysis of wildcard DNS powered
blackhat SEO,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 245–262. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/du

[20] Q. Xie, S. Tang, X. Zheng, Q. Lin, B. Liu, H. Duan, and F. Li,
“Building an open, robust, and stable voting-based domain top list,” in
31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 625–642. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/xie

[21] D. Liu, S. Hao, and H. Wang, “All your DNS records point to
us: Understanding the security threats of dangling DNS records,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016,
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds. ACM, 2016, pp. 1414–1425. [Online]. Available:
https://doi.org/10.1145/2976749.2978387

[22] M. Zhang, X. Li, B. Liu, J. Lu, Y. Zhang, J. Chen, H. Duan,
S. Hao, and X. Zheng, “Detecting and measuring security risks of
hosting-based dangling domains,” in Abstract Proceedings of the 2023
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS 2023, Orlando, FL,
USA, June 19-23, 2023, E. Smirni, K. Avrachenkov, P. Gill, and
B. Urgaonkar, Eds. ACM, 2023, pp. 87–88. [Online]. Available:
https://doi.org/10.1145/3578338.3593534

[23] K. Borgolte, T. Fiebig, S. Hao, C. Kruegel, and G. Vigna, “Cloud strife:
Mitigating the security risks of domain-validated certificates,” in 25th
Annual Network and Distributed System Security Symposium, NDSS
2018, San Diego, California, USA, February 18-21, 2018. The Internet
Society, 2018. [Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2018/02/ndss2018 06A-4 Borgolte paper.pdf

[24] CA/Browser Forum, “Baseline requirements for the issuance
and management of publicly-trusted tls server certificates,”
2023. [Online]. Available: https://cabforum.org/wp-content/uploads/
CA-Browser-Forum-TLS-BR-2.0.2.pdf

[25] The Chromium Project, “Moving forward, together,” 2023. [On-
line]. Available: https://www.chromium.org/Home/chromium-security/
root-ca-policy/moving-forward-together/

[26] CA/Browser Forum, “Ballot SC42: 398-day re-use pe-
riod,” 2021. [Online]. Available: https://cabforum.org/2021/04/22/
ballot-sc42-398-day-re-use-period/

[27] D. L. Jessica, Jackie Treiber, “Add grace period,” 2022. [Online].
Available: https://icannwiki.org/Add Grace Period

[28] Hexware, “Domain tasting,” 2023. [Online]. Available: https://en.
wikipedia.org/wiki/Domain tasting

[29] Jessica, “Domain kitting,” 2021. [Online]. Available: https://icannwiki.
org/Domain Kiting

15

https://doi.org/10.17487/RFC6454
https://www.rfc-editor.org/rfc/rfc9110.html#section-4.3.3
https://www.rfc-editor.org/rfc/rfc9110.html#section-4.3.3
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc9114
https://www.rfc-editor.org/rfc/rfc9113.html#name-server-push
https://web.dev/articles/signed-exchanges?hl=en
https://developer.chrome.com/blog/signed-exchanges/
https://caniuse.com/?search=SXG
https://caniuse.com/?search=SXG
https://blog.cloudflare.com/automatic-signed-exchanges/
https://cabforum.org/2019/09/10/ballot-sc22-reduce-certificate-lifetimes-v2/#Ballot-SC22-Reduce-Certificate-Lifetimes-v2
https://cabforum.org/2019/09/10/ballot-sc22-reduce-certificate-lifetimes-v2/#Ballot-SC22-Reduce-Certificate-Lifetimes-v2
https://cabforum.org/2019/09/10/ballot-sc22-reduce-certificate-lifetimes-v2/#Ballot-SC22-Reduce-Certificate-Lifetimes-v2
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html#name-status-of-this-memo
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html#name-status-of-this-memo
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html#name-status-of-this-memo
https://www.zscaler.com/blogs/security-research/abuse-hidden-well-known-directory-https-sites
https://www.zscaler.com/blogs/security-research/abuse-hidden-well-known-directory-https-sites
https://raymii.org/s/blog/How_I_got_a_valid_SSL_certificate_for_my_ISPs_main_website.html
https://raymii.org/s/blog/How_I_got_a_valid_SSL_certificate_for_my_ISPs_main_website.html
https://doi.org/10.1145/2663716.2663755
https://nodejs.org/docs/latest-v20.x/api/http2.html#http2streampushstreamheaders-options-callback
https://nodejs.org/docs/latest-v20.x/api/http2.html#http2streampushstreamheaders-options-callback
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/du
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/du
https://www.usenix.org/conference/usenixsecurity22/presentation/xie
https://doi.org/10.1145/2976749.2978387
https://doi.org/10.1145/3578338.3593534
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06A-4_Borgolte_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_06A-4_Borgolte_paper.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-TLS-BR-2.0.2.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-TLS-BR-2.0.2.pdf
https://www.chromium.org/Home/chromium-security/root-ca-policy/moving-forward-together/
https://www.chromium.org/Home/chromium-security/root-ca-policy/moving-forward-together/
https://cabforum.org/2021/04/22/ballot-sc42-398-day-re-use-period/
https://cabforum.org/2021/04/22/ballot-sc42-398-day-re-use-period/
https://icannwiki.org/Add_Grace_Period
https://en.wikipedia.org/wiki/Domain_tasting
https://en.wikipedia.org/wiki/Domain_tasting
https://icannwiki.org/Domain_Kiting
https://icannwiki.org/Domain_Kiting

[30] ICANN, “AGP (add grace period) limits policy,” 2008. [Online]. Avail-
able: https://www.icann.org/resources/pages/agp-policy-2008-12-17-en

[31] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten, “RFC
8555: Automatic certificate management environment (ACME),” 2019.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8555#section-7.6

[32] M. Zhang, X. Zheng, K. Shen, Z. Kong, C. Lu, Y. Wang, H. Duan,
S. Hao, B. Liu, and M. Yang, “Talking with familiar strangers: An
empirical study on https context confusion attacks,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1939–1952.

[33] M. Squarcina, P. Adão, L. Veronese, and M. Maffei, “Cookie
crumbles: Breaking and fixing web session integrity,” in 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA,
USA, August 9-11, 2023, J. A. Calandrino and C. Troncoso, Eds.
USENIX Association, 2023, pp. 5539–5556. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/squarcina

[34] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[35] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When HTTPS
meets CDN: A case of authentication in delegated service,” in 2014
IEEE Symposium on Security and Privacy. IEEE, 2014, pp. 67–82.

[36] J. Hoyland, “Exported authenticators: The long road to
RFC,” 2021. [Online]. Available: https://blog.cloudflare.com/
exported-authenticators-the-long-road-to-rfc/

[37] J. Archibald, “HTTP/2 push is tougher than i
thought,” 2017. [Online]. Available: https://jakearchibald.com/2017/
h2-push-tougher-than-i-thought/#you-can-push-items-for-other-origins

[38] K. Ueno and A. Ayer, “Intent to ship: Signed http exchanges (SXG),”
2019. [Online]. Available: https://groups.google.com/a/chromium.org/g/
blink-dev/c/gPH BcOBEtc

[39] M. Brinkmann, C. Dresen, R. Merget, D. Poddebniak, J. Müller,
J. Somorovsky, J. Schwenk, and S. Schinzel, “ALPACA: Application
layer protocol confusion-analyzing and mitigating cracks in TLS au-
thentication,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 4293–4310.

APPENDIX

A. Attack Requirements

TABLE V: Attack requirements for acquiring shared certifi-
cates

Attack Methods Exploited Resources Attack Requirements

Domain reselling Resold domains No requirements

Inactive cloud services CNAME/NS records of victim.com
pointed to discontinued cloud services

Domain takeover De-provisioned VPS IPs A records of victim.com pointed to
de-provisioned VPS IPs

Expired domain names CNAME records of victim.com
pointed to unregistered domain names

16

https://www.icann.org/resources/pages/agp-policy-2008-12-17-en
https://www.rfc-editor.org/rfc/rfc8555#section-7.6
https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina
https://www.usenix.org/conference/usenixsecurity23/presentation/squarcina
https://blog.cloudflare.com/exported-authenticators-the-long-road-to-rfc/
https://blog.cloudflare.com/exported-authenticators-the-long-road-to-rfc/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/#you-can-push-items-for-other-origins
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/#you-can-push-items-for-other-origins
https://groups.google.com/a/chromium.org/g/blink-dev/c/gPH_BcOBEtc
https://groups.google.com/a/chromium.org/g/blink-dev/c/gPH_BcOBEtc

	Introduction
	Background
	HTTP/2 Server Push
	Signed HTTP Exchange
	Shared Certificate

	CrossPUSH and CrossSXG Attack
	Threat Model
	Attack Concept
	Novel Security Implication
	Attack Methodology

	Attack Practicality
	Acquiring Shared Certificates without Intrusion
	Extending Attack Duration via Domain Validation Reuse
	Reducing Attack Cost via AGP Abuse
	Making Illegitimate Certificate Irrevocable

	Real-World Exploitation
	Leveraging HTTP Body
	Leveraging HTTP Header
	Leveraging Body and Header
	Attacking Multiple Targets with Single Click

	Large-Scale Evaluation
	Client-side: Vulnerable Browsers
	Measurement Challenge and Solution
	PSChecker and Local Test
	Client-side Result Analysis

	Server-side: Affected Websites
	Measurement Objectives
	Measurement Methodology
	Server-Side Overall Results
	Result Analysis of Reselling Domains
	Result Analysis of Dangling Domains
	Result Analysis of Cert-Sharing Domains

	Case Study: Attack Microsoft's Domain

	Discussion
	Mitigation
	Ethical Consideration and Responsible Disclosure
	CDN Analysis

	Related Work
	CrossPUSH and CrossSXG
	Other Attacks of Shared Certificate

	Conclusion
	References
	Attack Requirements

